

Release 2.0

Intelligent Code Repair

iCR for Java

Private Platform
User Guide 2.0

 Intelligent Code Repair

Release 2.0 Draft

2

Table of Contents
1.0 Introduction 4

2.0 Overview 5

3.0 Getting Started 7
3.1 Installing iCR for Java 7
3.2 Managing your service 8

3.2.1 icrforjava -a <IP Address> 8
3.2.2 icrforjava -d <directory-path> 8
3.2.3 icrforjava -l <license-key> 9
3.2.4 icrforjava -p <default-passphrase> 9
3.2.5 icrforjava -c <cmd> 9
3.2.6 Opening Ports 9

3.3 Accessing your source code 10

4.0 Using the Navigator 12
4.1 Connecting to the Navigator 12
4.2 Setting your private passphrase 13
4.3 The Navigator top banner 14
4.4 The Analysis Engine status 14
4.5 Selecting Your Source Code 14

4.5.1 Using a Cloud-based VCS 15
4.5.2 Using a local project 17

5.0 Using the Analysis Engine 19
5.1 Initiating an analysis 19
5.2 Monitoring the analysis 20
5.3 Interrupting the analysis 20

6.0 Reviewing Your Results 22
6.1 Reviewer summary and filters 23
6.2 Filter by Directory pane 24
6.3 Filter by Category pane 24
6.4 Handling Results 25

6.4.1 Reviewing a fix 25
6.4.2 Accepting a fix 27
6.4.3 Rejecting a fix 28
6.4.4 Undoing a fix 29
6.4.5 Providing feedback 29
6.4.6 Applying the fixes 30
6.4.7 Cases needing manual attention 30
6.4.8 Ending a Reviewer session 31

7.0 When You Are Complete 32

 Intelligent Code Repair

Release 2.0 Draft

3

Appendix A – List of Supported Fixers 33

Appendix B – GitLab OAuth Setup 33

 Intelligent Code Repair

Release 2.0 Draft

4

1.0 Introduction
Thank you for choosing OpenRefactory’s Intelligent Code Repair (iCR) for Java (iCR). iCR combines source level
static analysis and machine learning for examining programs to detect security, reliability, and compliance
issues and combines that with behavior-enhancing code refactoring technology to create safe and reliable
corrections for those flaws. This results in code free from many serious security vulnerabilities and
programming errors.

iCR for Java is offered as both an on-demand service, available through a cloud-provider like Amazon‘s AWS
or Microsoft’s Azure, and as a subscription service for private platform deployment. In both versions of the
service, customers can choose to analyze and repair projects which are managed by well accepted cloud-
based Version Control Systems such as GitHub, GitHub or BitBucket, or projects which are already copied into
a project folder.

This User Guide will provide the details about the specific features of the private platform version. For details
about the cloud-based service, please refer to the iCR for Java Cloud Deployment User Guide 2.0.

In the private deployment version, you subscribe to the service through contact with OpenRefactory. With
either a paid subscription or, possibly, a limited time free trial subscription, you will be provided a package
that contains everything you will need to operate iCR for Java.

The iCR for Java package contains the iCR Navigator, Analysis Engine and Reviewer. You use the Navigator to
help you to select the projects that you want to make available for processing. The Navigator launches the
Analysis Engine as needed and the Reviewer us used to browse through the fixes that were generated. The
reviewer uses a “diff” window so that you can see the original code alongside the fixes that were generated.
You can also use the reviewer to browse all the source in the affected file if you wish.

iCR for Java runs on a dedicated server that you provide as a Docker image. It is expected that this server has
the Docker container infrastructure installed. From the Docker site: “Docker provides a way to run
applications securely isolated in a container, packaged with all its dependencies and libraries.” This allows
you to install iCR for Java as part of your Development Operations infrastructure with confidence that it will
not disrupt your infrastructure. The server may be dedicated hardware within your development network or
could be part of private, cloud-based development environment.

This guide will show you how to connect to your Cloud-based version-control system (VCS) with support for
both GitHub and GitLab systems. Or you may choose to process projects which are already extracted from
the VCS and positioned into project folders.

You select a project for analysis, initiate an analysis of that project, and then review the results. The review
process presents to you all the flaws detected and allows you to review each correction whereby you can
accept or reject the recommended fix. For accepted fixes, you can then incorporate them back into your
project.

 Intelligent Code Repair

Release 2.0 Draft

5

2.0 Overview
The following is a quick overview of how to use iCR for Java. It is assumed that you have installed and
launched iCR for Java from the package that you received from OpenRefactory (see 3.0 Getting Started). It is
also assumed that you know the IP address of the host server where you installed iCR for Java.

Using that IP address, connect to the service using a standard browser of your choice.

iCR for Java consists of 3 major components:

1. The Navigator is the main component with
which you interact;

2. The Analysis Engine analyzes source code and
generates fixes;

3. The Reviewer helps you to review,
approve/reject and apply the fixes.

Using the Navigator, you will:

1. Direct the Analysis Engine to scan the source code of your Java project; and

2. Initiate the Reviewer(s) to examine the generated fixes and accept or reject them.

To understand how each of these steps is executed, let’s first look at how to select and analyze a project.
Figure 1 outlines the steps taken to select the code to be analyzed and initiating the analysis.

Step 1. Select the repository that you are using to manage your source code. This may be a version-control
system (VCS) available on the cloud or as an in-house service. iCR for Java supports your choice of
GitHub and GitLab systems. BitBucket will be available in a future release.

Step 2. Navigator connects with the repository and fetches the source code to the server. The Navigator will
use OAuth to authenticate with your VCS service. Once connected with the VCS, Navigator will present
you with a view of all the available repositories associated with your User ID. You may then clone any
repository you wish to examine, and you will have all of the branches available for analysis.

Step 3. Pick a branch to analyze and simply click on the Analyze button on Navigator.

Using iCR on the Cloud

Get iCR from Amazon Marketplace Web Service (MWS)

Run analysis engine

Review and apply fixes

Link to code repository using Navigator

Metered usage per Cloud Machine Hour (CMH)
$25 per CMH

(Amazon gets $0.50)

Analysis Engine ReviewerNavigator

Analysis
Engine

Navigator

Reviewer

1. Select Repository

3. Start Analysis

2. Fetch code from
remote repository

4. Trigger
Analysis

5. Generate
fixes for review

Analyze Code

Version Control
Systems

 Intelligent Code Repair

Release 2.0 Draft

6

Step 4. Navigator will start the Analysis Engine as a background process. You may monitor the progress from
Navigator in a separate browser tab. For a long running analysis, you may choose to receive a
notification and exit iCR. Only one analysis can be run at a time.

Step 5. The Analysis Engine analyzes the source code and prepares the fixes. You may choose to have the
Navigator send you an email notification when the analysis completes and the fixes are ready.

iCR for Java employs a suite of scalable deep analysis tools to provide a comprehensive analysis of your
program’s flow with emphasis on tracking references across methods. From that analysis, iCR for Java then
employs a broad family of what we call Fixers which are focused on common Java programming flaws and
coding standards such as the SEI CERT Oracle Coding Standard for Java. See Appendix A for a list of supported
fixers in iCR for Java.

Once a project has been analyzed and fixes generated, they are available for review. The diagram below
outlines the steps taken to perform a reviewing session.

Step 1. Return to the Navigator when analysis is complete to review the fixes. Select any branch that has
been analyzed and click on Review button on the Navigator. You may review past results even when
the Analysis Engine is running on something else.

Step 2. The Navigator starts the Reviewer component in a separate tab.

Step 3. The Reviewer allows you to browse all of the fixes and gives you the opportunity to accept or reject
various fixes. Any number of your developers can review and approve fixes concurrently. After
approving fixes, you can Apply them to your project. If there are fixes that you are not clear about or
you think are incorrect, you can let our developers know by filling out a quick feedback report for that
particular fix.

Step 4. The Reviewer creates a temporary branch in your repository with the potential fixes placed there as
git commits. This gives you a standard way of choosing when you want to roll these fixes into your
project branch(es).

The remainder of this guide will provide you with all the details needed to help you to run iCR for Java on
your projects.

Version Control
Systems

1. Review results

3. Approve fix

4. Commit to
temp branch

2. Start a
Reviewer

Review Results

Navigator

Reviewer

 Intelligent Code Repair

Release 2.0 Draft

7

3.0 Getting Started
3.1 Installing iCR for Java
It is quick and easy to get going on analyzing and automatically correcting programming errors in your Java
projects. With your iCR for Java subscription (either paid or a possible free trial subscription), you will be sent
a zip file with the iCR for Java package.

The examples in the guide will be using Linux as the reference platform. Support for platforms other than
Linux will be supported in future releases. All of the installation and configuration shown in this section will
be performed from a command line interface. So, your first step would be to SSH into your server and login.

Your Linux system must also be configured with two important packages:

1. You must have the zip/unzip package. This is frequently already installed on your Linux
distribution but, if not, you will need to install it since the iCR for Java package is distributed in zip
format;

2. The iCR for Java framework is designed to operate within a Docker environment. Docker allows you
to install packages like iCR on your private Linux platform and know that it will be protected from
other software on your system and your network.

If you need to install Docker, please refer to the Docker installation instructions which can be found
here: https://docs.docker.com/engine/install/.

NOTE:
Once Docker is installed, you will want to follow the common practice of creating a User Group to
allow Docker access without requiring root privileges for each user. To learn how to do that, please
refer to: https://docs.docker.com/engine/install/linux-postinstall/. These instructions assume that
you have done that so executing the icrforjava commands will not require typing sudo before
each command invocation.

Once your system is configured with the required packages you can install the iCR for Java package.

From the command line, copy the provided zip file into a convenient directory. To keep these instructions
simple, we will assume that all of the files noted above were expanded from the zip file into the same
folder/directory. For the examples used here, we will use:
 /home/userid/tools/icr

as the example folder/directory.

The zip file will contain:
1. iCR_for_Java–Private_Platform_User_Guide_v2.0:

This guide;
2. icr-for-java.tar:

This is the Docker image that implements iCR for Java. Instructions on how to use it are
detailed in this guide;

3. license.json:
This is your license from OpenRefactory to enable the service;

4. install-icr:
This is the script used to install iCR for Java on your host system;

5. icrforjava:
This is the command used to manage your server after installation. Use it to start up your iCR
for Java service, update configuration values or even remove it from your host server
completely;

 Intelligent Code Repair

Release 2.0 Draft

8

6. EULA_for_iCR_for_Java:
This is the End-User license which gives you the authority to use the iCR for Java on your
private platform. You must have read and accepted this prior to receiving and installing this
package.

With the zip file expanded, the first step is to install the iCR for Java components. To do that, execute the
install-icr command. This installation step will require root privileges so MUST be done using sudo.
Run the command as follows:

 sudo ./install-icr

You should see output that looks like the following:
034acb3a48e7: Loading layer [==>] 253.1MB/253.1MB
dd925e02d664: Loading layer [==>] 1.313GB/1.313GB
0537bb84bd7d: Loading layer [==>] 720.6MB/720.6MB
Loaded image: icr-for-java:local

This will accomplish a number of things for you:

• The Docker image will be installed into your Docker registry under the name icr-for-
java:local;

• The scripts will be copied to usr/bin where they will be accessible to all your developers who have
access to your host system;

• The companion files, such as the EULA, will be saved in your /etc directory in a new directory named
/etc/icr-data.

3.2 Managing your service

With the files copied and the Docker image installed, you can begin to run the service. One of the items
installed is the icrforjava command script. This command is used to stop/start the service, update critical
parameters used by the service and to uninstall the software if you need to do that.

The usage model for the command is as follows:

icrforjava [-a] [-d] [-l] [-p] [-c <cmd>] <arg>

The options can be combined in a single command. However, the -c <cmd> should always go last since it is
used to invoke server operations.

We’ll begin by looking at the first four options.

3.2.1 icrforjava -a <IP Address>

The -a option is used to provide iCR for Java with an IP Address for the server. Typically, the IP address for
the server is determined using localhost. However, if you are using a cloud-based repository, such as
GitHub, there needs to be a way for GitHub to reach the server from outside of the private platform’s
possibly protected network. In that case, you would need to provide an external public IP address for your
firewall to allow GitHub to reach the iCR for Java server. You can configure iCR for Java with the public IP
address using this command.

3.2.2 icrforjava -d <directory-path>

The -d option is used to anchor iCR for Java with the point in your host file system where you plan to store
projects for local access. While you may access GitHub or GitLab to process repositories managed by those
systems, you may also want to analyze and review projects resident in your local file system. You can also
include directories that may be attached via a network attached storage and mounted into your file system.
The default anchor point is the /home directory under which user directories are normally located within
Linux.

 Intelligent Code Repair

Release 2.0 Draft

9

3.2.3 icrforjava -l <license-key>

The -l option is used when there is a need to update or replace your activation license. This might happen if
you need to move the service to another host. The license is activated when you first run iCR for Java (not
when it I installed) and connect to the Navigator for the first time. After that, your service is node-locked to
the host computer. Should your license become damaged or unusable, this is a way for us to provide you
with a new license.

3.2.4 icrforjava -p <default-passphrase>

The default passphrase for iCR for java is set to: icrforjava. When you first login to the service, you use
the default passphrase to gain access to the Navigator. If the passphrase is set to the default, you will be
prompted each time you connect to the Navigator to change it from the default to some other practical
passphrase.

Using the -p option allows you to reset the passphrase back to the original default or a new default phrase
as specified by the string <default-passphrase> that you provide. Just remember that, if you change
the default, the Navigator will check to see if the default passphrase is in force and will continue to prompt
you to change it.

3.2.5 icrforjava -c <cmd>

The previous four options were used to update or change some configuration values. To actually operate iCR
for Java you use the -c <cmd> option. There are three specific <cmd> values that can be used to control
your server’s operation:

• icrforjava -c start
This is the command that is used to start the iCR for Java server. It assumes that you have
successfully installed the service on your host machine using install-icr. It starts the Docker
image from scratch. The first time that start is invoked, the service will be node-locked to this host
using the license provided in the package that you received. The default passphrase will be used to
access the Navigator for the first time. The default string is: “icrforjava”. You will be prompted to
change it once you access the Navigator.

• icrforjava -c stop
The stop command is used to stop the running instance of iCR for Java. The Docker container is
stopped and any activity in progress is interrupted. For example, if the service is stopped during an
analysis, that analysis will be abandoned. All results from previous analyses, however, are still
available and can be viewed again once the service is restarted using the start command.

• icrforjava -c uninstall
There may be cases where you wish to remove iCR for Java entirely from your host system. If so, run
the uninstall command. This will remove all of the Docker information as well as the directories
that were created as part of the install-icr process. All results from analyses will be removed.
Please be certain that you want to remove everything if you decide to run this command. If you need
to restore iCR for Java, and you have kept your original package, you can re-install the service using
the install-icr command again.

3.2.6 Opening Ports

iCR for Java uses a browser interface to interact with the Navigator and the Reviewer. It may be that the host
system for the service is behind a firewall or has security restrictions applied to it to limit network access. For
the service to run correctly, a number of TCP ports must be open to the server. Some of these ports may
already be open as they allow, for example, remote logins over SSH or other browser access. A couple of the
ports are unique to iCR for Java. The ports that you need to have open are the following TCP ports:

1. 22 – This is the SSH port to allow you to access your server. You use this to securely login into your
host system to be able to run the iCR for Java commands.

 Intelligent Code Repair

Release 2.0 Draft

10

2. 80 – This is the regular HTTP port to allow browsers to access your server.

3. 443 – This is the secure HTTPS port to allow browsers to access your server.

4. 3002 – This port is used by your Browser to work with the Navigator.

5. 3003 – This port is used by your Browser to work with the Reviewer.

3.3 Accessing your source code
iCR for Java is designed to work with source code managed by industry leading version-control systems (VCS).
In this release, iCR supports GitHub and GitLab. iCR also allows you to copy or upload a project source tree to
your server and analyze it that way if your source code is managed off of the cloud.

Assuming that you are using a cloud-based VCS, you need to authorize iCR for Java to access your projects.
Once you are logged into your source code control system, iCR will connect to your specific repositories and
analyze the specific project branches that you identify. In order to do this securely, and to ensure that
OpenRefactory NEVER has access to your Users’ login credentials, we employ the industry standard protocol:
OAuth1.

From Wikipedia: “OAuth is an open standard for access delegation, commonly used as a way for Internet
users to grant websites or applications access to their information on other websites but without giving them
the passwords.”

To allow iCR to use OAuth, you must authorize it with your VCS. For these examples, we will be using GitHub.
Similar steps are available for GitLab (see Appendix B for details).

To register a new OAuth app in GitHub, login into GitHub and traverse to “Settings”->

1 OAuth reference: https://medium.com/security-operations/what-is-oauth-and-why-should-i-use-it-5aa2f27ce387

 Intelligent Code Repair

Release 2.0 Draft

11

<- Then, select “Developer settings”

From here, click on “OAuth Apps”. This will open the page allowing you to add iCR for Java to the set of
approved third parties from which you will accept login redirect requests.

Clicking will open the window shown to the right.

You can enter a helpful string, such as “iCR-for-Java” for the
Application name. The Homepage URL will need to use the
IP address of your host system. For the purposes of this
guide, we will use an example IP address,
http://3.237.77.219.

iCR uses port 3002 to communicate with the browser, so
that needs to be added to the IP address to create the
Homepage URL.

Using the sample IP address, you would enter:
 http://3.237.77.219:3002

The application description is optional so you can leave it
blank. Note that this information will not necessarily be seen
by anyone logging into GitHub. Once the OAuth app is
created, Users will log in to GitHub using their private credentials and will not see this information.

The Authorization callback needs to provide the server’s URL of the callback, so, enter:
 http://3.237.77.219:3002/login/github/return

 Intelligent Code Repair

Release 2.0 Draft

12

Clicking on “Register Application” opens a window that asks you to create the secret keys that you will use on
your server to authenticate it with GitHub.

You will need both the client ID (0fd65d592f9e11c08c1c) and the client secret
(32ced7036f5093fffbcb841029a8d506ad54ad549ae9). Copy and paste these values in a convenient
place as you will need to present them to the Navigator when you first select GitHub as your preferred
repository, as described in Section 4.5 Selecting your source code.

A similar process is used to allow access for GitLab. Details of that are given in Appendix B.

With this information setup, you are ready to connect to iCR for Java for the first time.

4.0 Using the Navigator
This section will introduce you to the iCR Navigator, which is used to help you manage you project analyses. It
assumes that you are familiar with the Getting Started procedures outlined in Section 3 and have already
installed iCR for Java on your host server. You know your server’s IP address, and have created the OAuth
credentials to allow your developers to securely log into your cloud-based version-control service (VCS).

In the examples to follow, we will work with GitHub as the example cloud-based VCS.

4.1 Connecting to the Navigator
The iCR for Java service is accessible using any industry standard browser such as Chrome, Firefox, Safari or
Edge. To begin working with iCR, you need to access your server via the browser. It is reached using your
server’s IP address. In our examples we are using 3.237.77.219 as the public IP address. ICR uses port
3002 to reach the Navigator which is the application that will help you to manage your interactions with iCR
for Java.

Access the Navigator by entering your Server IP address followed by port 3002 into your browser. Using our
IP address as an example, this is the URL to enter:
 http://3.237.77.219:3002

Entering this URL will take you to the welcome screen for iCR for Java:

 Intelligent Code Repair

Release 2.0 Draft

13

You are presented with a
window that prompts the user
to enter a passphrase. Since
the IP address to your Server is
public, it is possible to have
uninvited “guests” attempt to
access your service. To protect
the service from unwanted
access, you must enter the
secret passphrase before you
can access the service. The
initial, default passphrase is set
to icrforjava.

NOTE: You can reset the default passphrase to a different string if you wish using the command
icrforjava -p <default-passphrase>.

So, type in the default passphrase:
 icrforjava
to enter iCR for Java.

4.2 Setting your private passphrase
Entering the passphrase will bring you to the Navigator where you will be prompted immediately to alter the
passphrase to something other than the default. The phrase should be at least 8 characters long and you may
use any alphanumeric values as well as special characters.

 Intelligent Code Repair

Release 2.0 Draft

14

4.3 The Navigator top banner
Once the passphrase is updated, you are presented with the Navigator Home screen. From here, you can
select and open project repositories with your projects, analyze one of more branches of any of these
projects and then, following analysis, you can review and apply corrections to flaws detected in those
branches.

At the top of screen, on the right side, you
see 5 buttons:

• Settings
• Help
• Comments
• Usage
• Exit iCR

The Settings button is used to change the
main passphrase and to update OAuth
credentials if you have chosen to modify

those. The Help button will take you to the OpenRefactory Website where you can download help
documents, such as this guide, and view the Video Tutorials to help you learn how to use iCR for Java. The
Comment button allows you to send your feedback to OpenRefactory. Your feedback helps us to improve the
interface and also helps us to improve the quality of the service by getting feedback concerning potential
false positives or improvements on the Fixers.

The Usage button helps you to learn how much time you have spent doing
analysis and reviewing. This gives you the knowledge of how much time
you have accumulated doing both Analysis and Reviewing Fixes.

Finally, the Exit iCR button takes you out of iCR for Java and back to the iCR for Java welcome screen. To re-
enter, you would, of course, have to enter your new passphrase.

These buttons will be presented on all other screens in the application so that you can always Exit iCR at any
time or provide feedback and get help. You may only change the settings from this Home Screen, however.

4.4 The Analysis Engine status
Below the top banner, the status of the Analysis Engine is displayed on the right side. Since the analysis
process is very RAM and CPU-intensive, iCR currently only support one analysis at a time. The status window
lets you know that the engine is available for a new analysis. Or, if an analysis is in progress, it will display a

brief summary of the ongoing analysis.

The status shown on the left indicates that the
Analysis Engine is available for use.

4.5 Selecting Your Source Code
Below the banner on the left side opposite the Engine Status is where you start the process of selecting your
source code to be analyzed or reviewed.

 Intelligent Code Repair

Release 2.0 Draft

15

Your first step is to select the repository where your project resides. iCR for
Java is best used when working with a commercial Version-Control System
(VCS) like GitHub or GitLab. The button is a drop-down menu from which you
can select your VCS. Or you can set up a path to a local directory on your
server where you have uploaded your project.

4.5.1 Using a Cloud-based VCS

From Section 3.3 Accessing your source code, you will have already set up the
OAuth credentials to allow logins to your preferred VCS. Assuming that you have done that, select your VCS
from the pull-down menu. For our examples, we will be using GitHub.

The very first time a user attempts to reach GitHub
following the OAuth configuration, the Navigator will
pop up a window requesting you to enter the Client ID
and Secret keys from the OAuth configuration. As
explained in Section 3.3 Accessing you source code,
hopefully you copied the Client ID and Secret
somewhere so that you can enter them here. Once
done, users may login into their GitHub accounts
without needed to repeat this process.

If there is some reason to change the OAuth Client ID
and Secret, you can get back to this window using the
Settings button on the main menu.

If you are already logged into GitHub from earlier
activity on your browser, then your repository will become available right away. Otherwise, you will be
redirected to the GitHub Website for Authentication. Once logged in, you will now see all of your available
GitHub projects.

Each project is presented with a “+” sign so that you can open it up to view its branches. Before you can
browse the project branches, however, you need to “clone” a copy of the project from GitHub. The Clone
button is to the right of the project name box.

For our example, we will use a project called Baritone, which we show below as cloned and ready for
analysis. Note that, once cloned, the Clone button is replaced by Remove. This provides you with a way of
removing a project if you desire. When you remove a project, however, note that ALL RESULTS WILL BE

 Intelligent Code Repair

Release 2.0 Draft

16

REMOVED. That is, any analysis that you have performed and not applied to your project will be lost. Clicking
on the “+” will enumerate all of the available branches:

In our example, the Baritone project shows many branches. Only one branch at a time can be selected. That
is reflected using the radio buttons to choose which branch to examine. Let’s look at the master branch.

Selecting its radio button causes three new options to appear:

• Analyze
• Review
• Update

The first button, Analyze, is always available and allows you to perform an analysis on the branch. Clicking on
it will take you to the Analysis screen which will display status on the ongoing analysis. Section 5.0 will
describe the Analysis Engine further.

The second button, Review, is not available unless one of more analyses of this branch have been executed.
Once an analysis is complete, you would want to click Review so that you can begin the process of looking at
the detected problems and the corrections that iCR has provided. Section 6.4 Handling Resultscovers the
details of the Reviewer within iCR for Java.

The third button, Update, is made available when the current status of the branch is out of date with the
currently checked-in status. That is, it may be “behind” the current master copy of the branch on the VCS
repository. This is not unusual in that your developers may be working with a branch while others are also
working on it. If you have made updates to the branch using the Reviewer those changes may already have
been incorporated into the “master” branch.

 Intelligent Code Repair

Release 2.0 Draft

17

Even though you may not have completed reviewing all of the corrections offered in the last analysis, you
may decide to interrupt that process and perform a more up-to-date analysis using the latest “master”
version. If so, you can select the Update button. This will cause the Navigator to pull-down the most recent
version of source code to the iCR for Java server.

Naturally, this will make further review of the old source invalid and so should be followed by a click of the
Analyze button, to perform a new analysis of the updated source code. In such a case, you may also decide to
simply Remove the project entirely and Clone it again. Doing so removes all past history of earlier analyses.

4.5.2 Using a local project

You may choose to not access source code from a cloud-based repository. iCR for Java also supports
accessing projects that are accessible directly on your server. Any of your developers may be given login
access to your server. From a shell console, you can upload projects to it or,
you may mount a network attached file system. In this case, it would need
to be mounted as a subdirectory of your configured anchor point in the file
system.

To select one of these local projects instead of a Git repository, choose the
“LOCAL” option on the “Select Repository” drop-down menu.

Selecting this option brings up the
Select Project window on the left side of
the screen. By default, it is anchored at
/home. However, you can reposition
this anchor point using the
icrforjava -d <directory-
path> as noted earlier in Section 3.2.2.

From the Select Project frame, you can
scroll down through directories and
subdirectories looking for the desired
project for analysis.

 Intelligent Code Repair

Release 2.0 Draft

18

In this example, we will select a project
called baritone which is located
within the directory java-projects
(which is displayed as the Base
Directory Path).

Clicking on Add Project brings the
project into our list of available projects.

Now the project has been added to the list of locally accessible projects available for analysis. Note that the
Analyze, Review and Remove buttons are now available. The Review button is grayed out until an analysis is
complete and results are available for review.

The Remove button allows you to drop this project form the list of available projects.

Note:
If you choose to remove a project ALL OF ITS RESULTS will also be deleted.

You can add as many projects as you wish.

 Intelligent Code Repair

Release 2.0 Draft

19

5.0 Using the Analysis Engine
iCR for Java supports the analysis of projects being managed by Cloud-Based services such as GitHub or
GitLab as well as locally accessible projects. For the purposes of demonstrating the Analysis Engine and the
Reviewer, we will use examples using the cloud-based repositories. The behavior when using locally
accessible projects is nearly identical and should be easy to infer from the following descriptions.

5.1 Initiating an analysis
To begin the analysis of a project, you will have logged into your Version-Control System (VCS) such as
GitHub, which is being used in our examples. You connected to the Navigator using your server’s Public IP
address and port 3002 (See 3.0 Getting Started). Once connected to the Navigator, you selected the project
you want to analyze, Cloned it and then selected the branch that you wish to analyze (See 4.5 Selection Your
Source Code).

To begin the analysis of the branch, click on the Analyze button.

Smaller projects (< 100,000 Lines of Code) tend to be less complex in terms of number of files and methods.
These may be analyzed within minutes. However, larger projects (> 1M LoC) may take much longer to
analyze. That’s OK. You don’t have to sit and watch as it could take many hours for a large, complex project
to be thoroughly analyzed.

Clicking the Analyze button gives you the option of requesting an
email notification when the analysis completes. If you select the
box requesting a notification, an email prompt is displayed. Enter
the email to which iCR will address your notification.

To begin the analysis, click
Yes. A new tab opens
which takes you to the
Monitor Analysis screen.

 Intelligent Code Repair

Release 2.0 Draft

20

5.2 Monitoring the analysis
This Monitor Analysis screen displays the progress of the analysis of a project.

 The window on the left displays information about the project including:
• The current state of analysis;
• The name of the project;
• The branch within that project being analyzed;
• The User ID of the User who initiated this analysis;
• Time when the analysis began;
• There is also an Abort button to stop the analysis.

The window on the right
displays the phases of the analysis and their progress. A total
count of the number of errors that have been corrected so far
is at the top of the window.

Various phases of the analysis are shown with progress bars to
give you a sense of how far the analysis has progressed.

Once analysis completes, the end time is added to the state
display.

While you may choose to watch the Monitor Analysis display,
as noted earlier, analysis make take a long time for complex
projects. In some cases, it may take many hours. So, you can go back to the Navigator tab and Exit iCR and
return when you are notified that the analysis is done. Or from the Navigator, you may choose to review the
results from an earlier analysis in a different project or branch.

If you return to the Navigator home screen, you will see that the Analysis Status has changed.

 The status now shows that there is a project running. The name and branch
of what is being analyzed is displayed. You will also note that a new button
has appeared. It is the Monitor Analysis button. Clicking on this button will

open a new Monitor tab so that you can check up on progress.

5.3 Interrupting the analysis
It could happen that you started an analysis on a project with the wrong branch and want to start over. Or,
after watching the progress for some time (remember, many large and complex projects could take many
hours to analyze) you may decide to abandon the analysis.

In either case, you may decide to Abort the analysis. If so, click on the Abort button at the top of the left
window. This will terminate the analysis. If you terminate the analysis you will lose any information you
produced to that point.

You can help out OpenRefactory determine if there was an issue with your analysis by clicking on Send Crash
Report which is the button at the bottom left of the left window. Selecting this is at your discretion but it will
help us to help you complete your analysis.

When clicked, a crash report window appears. You can enter the experience that you encountered as to why
you aborted the analysis. For example, it could be as simple as “I was analyzing the wrong branch”. Or it may
be that you thought the analysis was not progressing.

 Intelligent Code Repair

Release 2.0 Draft

21

In the latter case, we request that you consider clicking on the
option labeled “Send the console log of the run”. From the log,
we may be able to determine whether the analysis was in the
wrong or if it was progressing but just taking longer than you
expected.

We want to be clear that the log may contain various snippets of
your source code such as Method and Class names. We made
this optional so that if you have a concern about OpenRefactory
seeing even a tiny fragment of your source code, you can refuse
to forward the log. Of course, this means that we will not likely
be able to determine the cause of a failure if one occurred. But
we believe that having you retain complete control of your
source code is necessary for you to be able to trust that we treat

your code with the utmost privacy.

Once your analysis for each project is complete and fixes have been applied, you can stop your server or keep
it running for others to use.

 Intelligent Code Repair

Release 2.0 Draft

22

6.0 Reviewing Your Results
Once you have completed an analysis
of one of your project branches, you
can use the Navigator to begin
reviewing the results. Using our earlier
example project, following completion
of the analysis on the master branch,
the Navigator now shows the Review
button as being available.

Clicking on the Review button will
open a browser tab with a new Reviewer screen. Notice that the top banner from the Navigator screen is also
available in the Reviewer, with one exception. The Settings button is gone and replaced by the Home screen.
This allows you to return to a Navigator from this same tab. This is convenient if you have closed the
Navigator tab following the initiation of a Reviewer session.

The initial screen displays a summary of all previous analysis sessions (if any). You may have run the ICR
Engine more than once. It is helpful to repeat the analysis as you make changes to your code base.
Subsequent runs may reveal new issues that were introduced with the changes in the code base. The
sessions will be listed with the most recent at the top of the list and will have the highest Session number.

To view the results of any previous analysis, click on its Show Details button.

While you can select the results of any past session, only the most recent will permit the user to make
changes. Results from older sessions may only be viewed.

In the example above, we will be reviewing the initial set of results that we just produced so will click on the
Show Details button at the bottom of the “iCR Session: 1” box.

 Intelligent Code Repair

Release 2.0 Draft

23

6.1 Reviewer summary and filters
The Reviewer results are displayed using a combination viewing panes with filters.

The window is divided into 3 panes. At the top left is the Filter by Directory pane. Below that is the Filter by
Category pane. Finally, to the right of both of the filter panes is the Fixes pane.

The top portion of the Fixes pane displays a quick summary of the results. The Session number, the total
number of fixes produced by the analysis is shown along with information about which fixes have been
selected for display. At launch, all fixes are displayed by default.

The branch name that was the subject of this analysis is also displayed. More importantly, there is an
additional branch name displayed. When you accept and then apply fixes, the Reviewer will create Git
commits and apply them to a new, temporary branch in your repository. This allows iCR for Java to
automatically update your source code in a fashion that allows you to prepare and review pull-requests
before merging them into your actual project branch. In this example, the temporary branch is named:
iCR-master-20201106150758.

The tabs summarize the states of the various
fixes. When the Reviewer is first launched
following a fresh analysis, all the fixes generated are accounted for in the Found tab. It shows the total
number of fixes (37, in this example). The other states of a fix are:

• Accepted – This fix has been approved for future application to the code base

• Rejected – This fix has been rejected

• Manual – There were conflicts in accepting all of the fixes so some manual intervention will be
required

• Fixed – These are fixes that have been accepted and applied to the code base. Their state can no
longer be changed

 Intelligent Code Repair

Release 2.0 Draft

24

Note that each of the above tabs will show the total number of fixes in that state. If there are no fixes in that
state, the tab will be inactive. How the state of a fix is modified will be described in a later section.

Up to 10 fixes are presented at any one time. The bottom of the Fixes pane
shows the number of pages of fixes available for review and allows navigation
across the pages. Also, the summary bar at the top of the page will not scroll off
the top of the pane keeping the summary and the various state tabs available all
of the time.

Each fix is identified with a unique Fix ID to help to distinguish each fix as it moves through the system. In this
example below, the fix ID is NPI-FND-I. There is a title for the fix: Null Deference Check, and the category
within which this fix belongs: Null Pointer Issues.

There is also a description of the fix which includes the file name where the fix was produced:
IWaypoint.java, the particular class: iWaypoint and the method: getByName. This information makes it easier
for you to find the specific place in the code where the fix is being applied.

In the top right corner of the box is an icon that presents OpenRefactory’s view of the risk associated with the
bug being corrected. There are three levels of risk being assessed:

High

Medium and

Low

Higher risk bugs represent flaws that represent greater potential vulnerabilities if not corrected.

6.2 Filter by Directory pane
While this example “only” shows 37 fixes, larger projects may uncover
many more fixes to be reviewed and eventually applied. As such it is
helpful to be able to narrow the set of fixes to be reviewed.

One way to limit the fixes to be displayed is by selecting a subset of
the files to be viewed. The Filter by Directory enables that. To navigate
the directory structure and locate subdirectories of files, simply click
on the “+” next to each folder to display the next level down. In our
example, here is the view of the expanded “project” directory.
Clicking on a folder will only display fixes from within that folder and
its sub-folders. Clicking on a single file will limit the display to fixes
that only apply to that file.

The pane is scrollable so that you can see to any depth of directory
that you wish.

6.3 Filter by Category pane
Another way to filter the set of reviewable fixes is by constraining the
various classes of fixers that are to be reviewed using Filter by Category. When the Reviewer is first launched,
all of the categories are selected by default. This is indicated by showing that the “Select All” box is checked,
and each individual category box is checked.

 Intelligent Code Repair

Release 2.0 Draft

25

When all categories are selected and the entire project directory is
selected, the summary will show all fixes that are available for review.
In this example, that is 37.

Category filters are combined with the directory filter to limit the fixes
summaries to only those fixes within that directory subtree AND the
selected categories.

You may want to ONLY review fixes in a single category. In this case, you
may click on the Select All option. Doing that deselects all of the
categories. Then, you can click on only the one (or multiple) categories
of particular interest. Clicking Select All will reset the category filters
and all fixes will be displayed again.

If there is a directory subtree selected, only fixes in that category within
the selected subdirectory or file will be shown.

In the example provided here, we have selected only those fixes in the
Object Visibility category. Because of that, the summary at the top of the Fixes pane is updated to reflect that
now, only 17 fixes are selected for review. Note that the Found tab also reflects this.

6.4 Handling Results

6.4.1 Reviewing a fix

Once you have filtered for the set of fixes for review, you may begin processing them. That typically begins
with clicking on the Found tab to see what fixes need to be reviewed. In our example, we will be looking at a
set of fixes within the Object Visibility category. There were 17 fixes identified.

To show how to process a fix, we will look at Fix OV-LFA-8. In this example, it has detected an encapsulation
problem where a variable that should be declared private to the class was declared as public.

 Intelligent Code Repair

Release 2.0 Draft

26

To correct this Encapsulation Problem, the variable is made private and a pair of accessor methods to set and
get the value is created. Any other files that reference the variable are updated to use the accessor methods
instead of modifying the variable directly. As a result, the summary of the fix shows that there are offered
changes to a total of 5 files.

To see the diffs for all of the 5 files, click on the Show Diff button. Doing that reveals an expanded display.

Since there were 5 files affected, there are 5 Diff: tabs shown where each tab corresponds to the changes
suggested for each affected file. In this example, Diff: 1 is selected and displayed. This is the diff for the file
containing the improperly declared public variable.

The lines that were changed are identified by the red highlighted statements. In this example, that is Line 53.
The text below that shows the corrected code with green highlights. The class variable double
combinedCost was declared public but should be private. The iCR generated code corrects the issue
by making the variable private shown as the replacement for line 53. In addition, the accessor methods
getCombinedCost and setCombinedCost are added to allow controlled access to the now private
variable as shown in added lines 107 through 114.

 Intelligent Code Repair

Release 2.0 Draft

27

If you want to browse the original source file associated with this fix, you can click on the Show Source tab. A
scrollable window will appear below the diff window with tabs for each of the files that have a diff for this fix.
You can click on any tab to browse the source for any of the affected files. In this case Source of Diff: 1.

You can scroll through the original source file independently of the diff window.

Once you are satisfied with reviewing a particular correction, you can select other Diff: tabs to review all the
suggested changes for this fix.

To view other fixes, scroll through the list of fixes or select new filters.

6.4.2 Accepting a fix

Continuing with the example of Fix OV-LFA-8, there are 2 buttons at the bottom left of the diff window. They
are labeled Accept and Reject. These options allow you to make a decision on whether or not the changes
are desired.

By clicking the Accept button, the fix (OV-LFA-8) is placed in the Accepted state. All of the changes are
connected and changing some without the others would result in invalid code. It does not really matter which
particular diff is used to accept or reject the changes. In the above example, Accept is chosen for Diff: 1. Once
chosen, the Diff window closes, and the fix disappears from the list of Found fixes.

Note that the summary tab now shows one fix in the Accepted state. Its tab is now highlighted in Blue
because it is no longer empty.

 Intelligent Code Repair

Release 2.0 Draft

28

Clicking on the Accepted tab brings up the list of accepted fixes. In this example, there is the fix we just
accepted, fix OV-LFA-8, with changes to 5 files.

6.4.3 Rejecting a fix

It may be that there is a reason for not accepting a fix. If so, you may choose to click on the Reject button.
This behaves in exactly the same way as accepting a fix. All of the diffs associated with this fix are kept
together and the fix moves to the Rejected state. For an example of this, we will reject fix OV-LFA-1. After
clicking the Reject button, the fix is moved to the Rejected state and that is reflected in the summary tab. As
before, the Rejected tab becomes highlighted as it is now active with one rejected fix in that state.

Clicking on it reveals the rejected fix:

 Intelligent Code Repair

Release 2.0 Draft

29

6.4.4 Undoing a fix

Using the above example of OV-LFA-1, it may be realized that the fix is, indeed, needed, and that you want to
change its status. This is easy to do by clicking on the one of the diffs to review the changes.

Clicking on the Show Diff button, as before, will display the original code and the rejected changes. But you
will notice that the buttons at the bottom of the window are different from the Found fixes with a new
button at the bottom.

A new Undo button is now available. If it is chosen, then the fix moves back to the Found state where it can
be left for further review later.

Since this example is one of a rejected fix, then the other option, to accept it instead, is also offered. So, you
can click on the Accept button, and the fix will be moved from Rejected to Accepted.

A similar process works for Accepted fixes. Should the user decide to reject it instead, the Reject button is
available. Also, as in the example above, the Undo button is also there as so the fix may be moved back to
the Found state for later review.

A fix can be moved from any one of Accepted, Rejected and Found states by clicking the appropriate button
while displaying a diff.

6.4.5 Providing feedback

When looking at diffs that are in the Found state, you will note that there is
another option shown on the bottom right of the diff window opposite the
Accept and Reject buttons. This is a pull-down menu that offers your
developers the opportunity to provide feedback to OpenRefactory engineers.

While iCR for Java has a comprehensive analysis engine, there are always ways to improve it. Should your
engineers determine that there may be an error in the analysis, or some other issue that they would like to
see improved, they can select one of the feedback options and write a brief email for our development team.

 Intelligent Code Repair

Release 2.0 Draft

30

The feedback window gives your developers the options to include the
text of the fix and source code snippets so that we can evaluate our
analysis and our correction.

We are constantly finding ways to improve both our analysis and the
quality of our fixes, so your feedback would be welcome.

6.4.6 Applying the fixes

The Reviewer provides the ability for you to select, browse and identify fixes to be accepted or rejected. The
main purpose of this process is be able to apply these fixes to the source code itself.

When reviewing fixes in the Accepted state, you may click on the Show Diff button to review the offered
changes. The display is a bit different from the one shown earlier.

Since this is an Accepted fix, the options at the bottom of the window are different. The Undo button is there
as before, but now the user has the option of changing their mind and rejecting the change. That will move it
over to the Rejected state.

And there is an additional option on the right side of the window that is only available for fixes in the
Accepted state. The Apply Fix button offers you the ability to insert the corrected code into the project itself.
Clicking on Apply Fix instructs the Reviewer to create git specific commits to the temporary branch.

Also, at the top of the page shown above, there is a new button that appears at the top right of that window.
That is the Apply All button which becomes active when any fixes are moved to the Accepted state. Clicking
on this will tell the Reviewer to apply all of the fixes which are in the Accepted state. This is a quick way of
applying all the currently accepted fixes in one step.

Once fixes have been applied, they are moved into the Fixed state. Once in the Fixed state, the fixes cannot
be undone other than having a developer manually edit the code. It is exactly the same as if the developer
had modified the code directly and committed them manually.

6.4.7 Cases needing manual attention

The iCR for Java engine creates fixes independently of other fixes. As such, it is sometimes the case when the
same area of code may be affected by overlapping fixes. Since some fixes may be accepted and others

 Intelligent Code Repair

Release 2.0 Draft

31

rejected, there are cases where the Reviewer cannot make an unambiguous set of edits to the code to result
in the correct output when Apply Fix or Apply All is clicked. In those cases where the changes could not be
safely applied automatically, the Reviewer will move the fix into the Manual state.

Once a fix is in the Manual state, it is treated the same as those in the Fixed state in that its state can no
longer be changed. It would need to be edited manually to incorporate any desired fixes and the commits or
other edits to the source code in the temporary branch would need to also be performed manually.

6.4.8 Ending a Reviewer session

It may be the case, especially if you are executing iCR for Java for the first time, that there will be many
offered fixes to be reviewed. You may want to distribute the task of reviewing the fixes to multiple members
of your team. Or, you may want to review fixes in batches over time.

You can end a Reviewing session at any time by clicking on the Home button. This is recommended so that
you can avoid unnecessary usage charges. This will redirect your tab back to the Navigator. This is handy if
you had closed the Navigator tab from before. Or, you can simply close the Reviewer tab and return to your
previous Navigator tab. In either case, your Reviewer session ends, and your usage accrual is stopped.

Because iCR for Java is a pay-as-you-go service, the Reviewer also monitors your activity. If you are idle for a
period of 15 minutes, the reviewer pops up an alert asking if you want to continue the session. If so, simply
click continue to proceed.

If you allow the timeout to expire, your Reviewer session will end, and a simple display will be shown to let
you know that iCR for Java ended your session and your usage accrual has stopped.

Of course, you can always end your session by simply clicking the Exit iCR button.

You may return at any time to the Navigator by clicking on its tab. However, it is strongly recommended that
you explicitly end each Reviewer session to limit your usage time accrual.

 Intelligent Code Repair

Release 2.0 Draft

32

7.0 When You Are Complete
Once you have reviewed all of your results, you can exit the Navigator. To close a Reviewer session, simply
close the tab or click the Home button. To leave the Navigator, you may close the Navigator tab or click Exit
iCR.

If you have completed all the analyses and have reviewed all of your results, you can check them on your VCS
and verify the commits are there. Any fixes that were applied will be committed to the temporary branch as
identified in the Reviewer header banner.

Once satisfied that you are complete, you can go to your terminal console and stop the server using
icrforjava -c stop. Note that stopping the server will leave all of your previous results available for
later. You can restart the server using icrforjava -c start. Of course, it may be more convenient to
always keep the server running so that other developers can analyze their projects

OpenRefactory appreciates receiving all feedback on its products that users are willing to provide. Please
contact us at info@openrefactory.com if there are any questions or suggestions for improvements on the
operation of iCR for Java.

 Intelligent Code Repair

Release 2.0 Draft

33

Appendix A – List of Supported Fixers

This appendix enumerates the currently supported set of Fixers for the iCR for Java Analysis Engine.
OpenRefactory is constantly updating this list as new algorithms are developed for additional Fixers.
Please contact OpenRefactory at info@openrefactory.com to stay current on available Fixers.

API Usage Issues (7):

Add Controller Class Restrictions –
A Spring @Controller class that uses @SessionAttributes have to call
setComplete() on the SessionStatus object from an @RequestMapping
method. This is specific to the Spring framework.

Add Component Package Location –
A class with annotation @ComponentScan should include all component (Service,
Repository, Controller, RestController) packages. Otherwise, the classes will not be
available in the Spring application context. This is specific to the Spring framework.

Add Default Package Restrictions –
The default package should not contain a class with @ComponentScan,
@SpringBootApplication, or @ServletComponentScan annotation. This is
specific to the Spring framework.

Block Serialization with Append –
An object output stream that is opened in append mode should not be serialized because
the data will be stored in the wrong format and a deserialization attempt will result in an
exception being thrown.

Replace Confusing Scope Combination –
Classes with annotation @Controller, @Service, or @Repository are singleton
classes and if they have @Scope annotation, that should be explicitly specified. This is
specific to the Spring framework.

Replace EnableAutoConfiguration with Import –
A class with annotation @EnableAutoConfiguration, should be replaced by
@Import, as @EnableAutoConfiguration may include unnecessary beans which
slows down an application. This is specific to the Spring framework.

Remove Method Call –
Remove unnecessary method calls that have been deprecated.

Arithmetic Issues (1):

Fix Zero Division –
Removes zero division opportunities in code. Fixes CWE 369, CERT Secure coding standard
NUM02-J.

 Intelligent Code Repair

Release 2.0 Draft

34

Bad Control Flow (4):

Add Missing Breaks –
Unexpected control flow because of missing break statements in switch. Fixes CWE
484.

Fix Equality Check –
Confusing object equality (equals method) with reference equality (== operator) and vice
versa lead to inappropriate control flow, thus leading to hard-to-debug root causes.
Perform appropriate equality checks according to the context. Fixes CWE 595, CWE 597,
CERT Secure coding standard EXP03-J, CERT Secure coding standard EXP50-J.

Move Default Statement –
Switch statements should handle default case after everything else is handled.

Remove Unused Semicolon –
Remove unexpected control flow scenarios because of bad use of delimiters.

Broken Authentication (2):

Fix Hard-coded Key –
Cryptographic keys or other credentials should not be kept hard-coded in the source code.
An attacker can extract the strings or byte arrays from an application source code or
binary. Fixes CWE 798, OWASP A2-Broken Authentication, CERT Secure coding standard
MSC03-J.

Fix Hard-coded Password –
User passwords should not be kept hard-coded in the source code. An attacker can extract
the strings or byte arrays from an application source code or binary. Fixes CWE 259,
OWASP A2-Broken Authentication, CERT Secure coding standard MSC03-J.

Concurrency Issues (4):

Avoid Value-Based Class Locks –
Synchronization should avoid value-based classes as locks. Fixes CERT Secure coding
standard LCK01-J.

Avoid String and Boxed Primitive Locks –
Synchronization should avoid Strings and boxed primitives that can be reused. Fixes
CERT Secure coding standard LCK01-J.

Remove Servlet Mutable Fields –
Make the instance fields of the servlet classes to be static or final, or remove them.
The servlet container creates one instance of each servlet for each HTTP request and the
threads will share the instance fields, leading to concurrency issues. Fixes CERT Secure
coding standard MSC11-J.

Synchronize with Proper Class –
Synchronization should avoid using getClass() methods. Fixes CERT Secure coding
standard LCK02-J.

Improper Access Control (2):

Get Proper Permission –
Get Proper Permission from the super ClassLoader if any class extends the
URLClassLoader. Fixes CERT Secure coding standard SEC07-J.

 Intelligent Code Repair

Release 2.0 Draft

35

Prevent Persistent Entity Short-circuiting –
Persistent objects annotated with @Entity or @Document should not be used as
arguments in methods annotated with @RequestMapping and similar other
annotations. This is specific to the Spring framework. Fixes CWE 915, OWASP A5-Broken
Access Control Issue.

Improper Method Call (4):

Check Return Result –
Method return values that return error codes should be checked against error codes before being
used. Fixes CWE 252.

Fix Finalize Method Implementation –
finalize method should be avoided or if used, called properly with reference to
Object.finalize. Fixes CWE 568, CERT Secure coding standard MET12-J.

Call Super Method –
Overriding methods should reference the method in the parent class.

Prevent Incompatible Transactional Calls –
Methods should not call same-class methods with incompatible "@Transactional" values.

Injection (8):

Prevent SQL Injection –
Constructing SQL queries with untrusted user provided data, e.g., URL parameters,
enables attackers to inject code in place of data that changes the meaning of the SQL
query. Identify potential SQL injection opportunities. Fixes CWE 20, CWE 85, CWE 943,
OWASP A1-Injection Issue, CERT Secure coding standard IDS00-J.

Prevent Cross-site Scripting –
When endpoints reflect back tainted, user-provided data such as POST content, URL
parameters, etc., it may allow attackers to inject code that will eventually be executed on
the browser of a user. Identify potential SQL injection opportunities. Fixes CWE 79, CWE
80, CWE 81, CWE 82, CWE 83, CWE 84, CWE 85, CWE 86, CWE 87, OWASP A7-XSS.

Prevent Path Manipulation –
Constructing file system paths from untrusted user-provided data such as POST content,
URL parameters, etc., enables attackers to inject specific path browsing symbols, such as
"..", to manipulate the file path and to access files that they are not allowed to access
otherwise. Identify potential path manipulation opportunities. Fixes CWE 22, CWE 23,
CWE 36, CWE 99, CWE 641, OWASP A1-Injection, OWASP A5-Improper Access Control.

Prevent OS Command Injection –
Applications that execute operating system calls should not use untrusted user-provided
data to create the command or command parameters. Identify potential OS command
injection opportunities. Fixes CWE 77, CWE 78, CWE 88, OWASP A1-Injection.

Prevent XPath Injection –
Constructing XPath expressions using untrusted user-provided data such as POST
content, URL parameters, etc., enables attackers to inject specially crafted values that
change the way the expression is supposed to interpreted under normal circumstances.
Identify potential XPath injection opportunities. Fixes CWE 643, OWASP A1-Injection,
CERT secure coding standard IDS53-J.

 Intelligent Code Repair

Release 2.0 Draft

36

Prevent LDAP Injection –
Constructing LDAP names or search filters using untrusted user-provided data enables
attackers to inject values that change the way the name or the filter is supposed to
interpreted under normal circumstances. Identify potential LDAP injection opportunities.
Fixes CWE 90, OWASP A1-Injection, CERT secure coding standard IDS54-J.

Prevent Regular Expression Denial of Service –
Using external strings as regular expressions leads to potential denial of service attack
since evaluating the regular expressions is CPU intensive. Identify potential regular
expression injection opportunities. Fixes CWE 400, OWASP A1-Injection.

Prevent SQL Injection in Prepared Statement –
Prepared Statement is used to prevent SQL injection attacks. But, constructing SQL queries
with string concatenation using untrusted user provided data, e.g., URL parameters, undermines
the benefits of a Prepared Statement. Identify potential SQL injection opportunities. Fixes CWE
20, CWE 85, CWE 943, OWASP A1-Injection Issue, CERT Secure coding standard IDS00-J.

Null Pointer Issues (2):

Bad Return Value –
Methods with boxed type return values should not return null. Fixes CWE 476, CERT Secure
coding standard EXP01-J.

Fix Null Dereference –
A pointer which has not been initialized is used as if it pointed to a valid memory area in the heap. A
null pointer issue happens because the developer mistakenly did not allocate an object or has
mistakenly assumed that that the object is allocated when in fact it is null. Fixes CWE 476, CERT
Secure coding standard EXP01-J.

Object Visibility (2):

Add Qualifier for Static –
Access inherited static fields using the parent class as the qualifier.

Limit Field Access –
Accessibility of fields in Java classes should be limited. Fixes CWE 582, CWE 607, CERT
Secure Coding Standard OBJ01-J and OBJ13-J.

Security Misconfiguration Issues (11):

Declare EJB Connectors Properly –
Following EJB 3.0 conventions, application security interceptors must be listed in the ejb-
jar.xml file, or they will not be treated as default interceptors. Fixes OWASP A6-Security
Misconfiguration Issue.

Remove Duplicate Validation Forms –
The names of Struts validation forms should be unique. When there are duplicate
validation form names, the Struts Validator arbitrarily chooses one of the forms to use for
input validation and discards the other. This is specific to the Struts framework. Fixes CWE
102, OWASP A6-Security Misconfiguration Issue.

 Intelligent Code Repair

Release 2.0 Draft

37

Use Declared Filter –
Every filter declared in web.xml file should be used in an element. Otherwise such filters
are not invoked. Fixes OWASP A6-Security Misconfiguration Issue.

Limit Scope of Maven Dependencies –
System dependencies in Maven are sought at a specific path that matches a configuration
and cannot be ported. If an artifact is deployed in an environment that is different from
the original configuration, the build would fail.

Track Messages During Restart –
In Spring, DefaultMessageListenerContainer is implemented as a Java Message
Service (JMS) polling component. While the Spring container is going through a
restart/shut down, the message listener may discard messages and will therefore lose
them. The message listener container should be declared such that the messages are not
discarded. This is specific to the Spring framework.

Allow Automatic Connection Recovery –
Spring framework uses a factory object (SingleConnectionFactory) that returns the
same connection for all connection requests. This should be declared with a setting to
allow automatic recovery when the connection goes bad. This is specific to the Spring
framework.

Stop Debugging Web Remoting –
Direct Web Remoting (DWR) is a Java and JavaScript library that enables RPC calls in an
Ajaxian application. If the debug mode of DWR is turned on, it will allow users to access
information exposed under the debugging servlet. This is specific to the DWR library.

Remove Duplicate Servlet Definition –
When a deployment descriptor contains the same name for multiple servlets, only the first
one is deployed, and the others are ignored.

Avoid GET Mix –
Spring framework annotations should use HTTP GET method and not mix it with other
methods. Fixes CWE 352, OWASP A6-Security Misconfiguration Issue.

Use Proper Request Mapping –
Ensures that Proper Request Mappings are used. Fixes CWE 352, OWASP A6-Security
Misconfiguration Issue.

Annotate Public Method –
Spring framework annotations should be accompanying a public method.

Sensitive Data Exposure (4):

Replace Random Generator –
Weak random number generator should be replaced with a strong random number
generator. Fixes CWE 330, CWE 332, CWE 336, CWE 337, OWASP A6-Security
Misconfiguration Issue, Secure coding standard MSC63-J.

Remove Weak Seed –
A strong random number generator does not need a seed value to be set. Setting the seed
with a constant or a predictable value will weaken the random generator itself. If a seed
value is set explicitly, it should be removed. Fixes CWE 337, OWASP A6-Security
Misconfiguration Issue, CERT secure coding standard MSC63-J.

 Intelligent Code Repair

Release 2.0 Draft

38

Use Proper Dependency Injection –
Non-static members and constructors in classes with annotation @Controller,
@Service, or @Repository should have proper annotations (any one of @Autowired,
@Value, @Resource, or @Inject). This is specific to the Spring framework. Fixes
OWASP A3-Sensitive Data Exposure Issue.

Prevent XML eXternal Entity –
XML Document Type Definition (DTD) should be disabled to prevent information
disclosure via XXE attacks. Fixes CWE 611, CWE 827, OWASP A4-XML eXternal Entities.

Weak Cryptography Issues (6):

Use Strong Password Encoder –
Authentication manager should use a strong password encoder. This is specific to the
Spring framework. Fixes CWE 327, CWE 328, OWASP A2-Broken Authentication Issue,
OWASP A6-Security Misconfiguration Issue.

Use Strong Hash Function –
Hashing should be done using strong hashing algorithm such as SHA-256 or SHA-3. Fixes
CWE 327, CWE 328, OWASP A6-Security Misconfiguration Issue.

Use Secure Socket Protocol –
SSL context objects should use a secure socket protocol such as TLS or DTLS. Fixes CWE
326, CWE 327, OWASP A3-Sensitive Data Exposure, OWASP A6-Security Misconfiguration
Issue.

Restrict Access to Broadcast Receiver –
While registering broadcast receivers in Android, broadcast permission should be specified
so that a receiver only receives broadcasts sent by components having proper
permission. This is specific to Android applications. Fixes CWE 925, OWASP A1-Injection.

Restrict Access to Broadcast Sender –
While sending broadcast messages in Android, broadcast permission should be specified
so that only receivers with proper permission can receive it. This is specific to Android
applications. Fixes CWE 927, OWASP A3-Sensitive Data Exposure.

Prevent Sharing of User Preferences –
Android getPreferences and getSharedPreferences should use private mode
when invoked, so that the preferences are not exposed globally. Fixes OWASP A3-
Sensitive Data Exposure.

 Intelligent Code Repair

Release 2.0 Draft

39

Appendix B – GitLab OAuth Setup

Section 3.3 Accessing Your Code, describes how to create the OAuth credentials needed to access GitHub.
This appendix adds the additional details if you are planning on using GitLab to access your source code.

GitLab also uses the OAuth standard to allow you to tell GitLab that your iCR
for Java server is allowed to redirect login credentials for GitLab to
authenticate. To set this up, login into GitLab and go to your user menu at the
top right of the GitLab menu bar. From there, select “Settings” from the pull-
down menu.

The “Settings” menu offers a number of configurable options. Click on
“Applications” to go to the Applications authorization page.

The “Applications” page is where you tell GitLab to allow your Server to allow logins redirected from the
Server. For the application “Name” use whatever you like. “iCR-for-Java” has been used in this example. You
also must enter the redirect URL to the server. GitLab’s OAuth uses that to verify the authorization
handshake. Enter the URL as your server’s IP address with port 3002 and the callback text. Using the example
IP address from Section 3.3, enter:

http://3.237.77.219:3002/login/gitlab/return

You need to select both the “Confidential” and the “api” options.

 Intelligent Code Repair

Release 2.0 Draft

40

As was noted for GitLab, once you have completed this step, you will need to copy the Application ID and the
Secret. From here, the process is the same as outlined for GitHub.

