OpenRefactory

Automated Fixing
is the Future

OpenRefactory is advancing software development
by providing a sophisticated service called Intelligent
Code Repair (iCR) to help programmers develop
higher quality, more secure software in less time.

Software is expensive to create and support, while
flaws cause significant customer problems due to
losses in sales or revenue and distrust of the software
provider. iCR reduces developer cost and risk while
removing potential security holes and eliminating
common bugs caused by human error.

iCR is unique because using automation to accurate-
ly rewrite code very difficult. This White Paper pro-
vides technical context and detail surrounding the
core principles of iCR to help developers understand

how it works.

The Problem

Software is created by human beings, who, being human,
are prone to making mistakes—lots of mistakes. Fred
Brooks, in his classic text on the challenges of software
development, says this about programmers:

First, one must perform perfectly. The computer
resembles the magic of legend in this respect, too. If
one character, one pause, of the incantation is not
strictly in proper form, the magic doesn't work.
Human beings are not accustomed to being perfect,
and few areas of human activity demand it. Adjusting
to the requirement for perfection is, | think, the most
difficult part of learning to program.?

The mistakes show up as bugs in the software. Sometimes
the effects are insignificant, but at other times the errors
can be catastrophic. For example, the famous Heartbleed
security flaw of 2016 was estimated to have caused around
half a billion dollars to correct.

Coralogix?, the data logging analytics company, studied
the issue of developer productivity and makes the follow-
ing claims:

“5 amazing facts on exactly how much time is spent on
debugging and code fixing in the software industry:

1. On average, a developer creates 70 bugs per 1000
lines of code (!)

2. Fifteen bugs per 1,000 lines of code find their way to
the customers

3. Fixing a bug takes 30 times longer than writing a line
of code

4. 75% of a developer’s time is spent on debugging
(1500 hours a year!)

5. In the US alone, $113B is spent annually on identify-
ing and fixing product defects

So if you thought that your developers are spending
their time on making your dream a reality... you better
think again, most of your budget is spent on debugging,
and when debugging takes a lot of time, versions are
delayed.”

Many of these bugs are logic bugs associated with the
intended behavior of the software. A large number, though,
arise from common coding errors. And some of these
coding errors can have serious security consequences,
such as the Heartbleed bug noted earlier, where it was
shown that the problem was in the code for two years
before being detected.

Developers don't set out to write buggy code and, what's
more, they hate fixing bugs. The compressed time frame
under which they work is to blame. What is needed is a tool
that enables developers to work as quickly and error free
as possible, a tool that truly solves the problem of bug
fixing. This would lead to two major positive outcomes:
happier developers (key to retention in the face of fierce
competition for talent) and a better product (more and
better features; bug free).

OpenRefactory

Intelligent Code Repair (iCR)

Automated tools are available to detect programmer
errors. The tools generate a swarm of warnings that devel-
opers must analyze to determine if the warnings are valid.
This task is laborious and time-consuming, partly because

of the high number of false positives produced by the tools.

OpenRefactory’s iCR is challenging this established indus-
try by asking, “What if there is a way to not just discover
possible coding errors, but to actually repair them,
automatically and correctly every time?” The mature
detection-only services do help lower the total number of
bugs released in the product, but do nothing to reduce the
time it takes to achieve a quality product.

The confluence of key technologies

Until now, there was a sound reason why automation has
only addressed the detection side of the issue. Fixing the
flaw is much harder than detecting it. As an analogy, it is
much easier for a dentist to identify a cavity than it is to
drill it out and fill it.

In terms of automation, a key development has been the
integration of machine intelligence into the process of
altering source code. At the University of Illinois at Urba-
na-Champaign (UIUC), work on Code Refactoring has been
going on for nearly three decades. OpenRefactory’s CEO
and cofounder, Dr. Munawar Hafiz, received his Ph.D. from
UIUC in 2009, where he focused on using emerging code
refactoring techniques to accurately rewrite fragments to
fix security problems in software.

His approach to refactoring, however, challenged the
conventional understanding of refactorings. Refactorings
are usually behavior-preserving changes to improve the
maintainability of the code. Dr. Hafiz, on the other hand,
introduced behavior-enhancing refactorings that not only
preserve behavior in the normal path of a program, but
also modify the behavior to fix a security, reliability, or a
compliance issue.

For example, a program with an SQL injection problem will
allow an attacker to access unathorized data. A behav-
ior-enhancing refactoring modifies the program so that a
user’s database queries are processed normally, but an
attacker’s malicious database queries are filtered by the
program.

The major roadblock that behavior-enhancing refactoring
faced was that the level of code analysis it requires is more
extensive than that typically performed by traditional
refactoring and detection-only technologies. Dr. Hafiz’s
dissertation and subsequent research work has demon-
strated that by augmenting code refactoring with deep

analysis and increased machine intelligence behavior-en-
hancing refactoring (Intelligent Code Repair) can be
realized.

The outcome of Dr. Hafiz’s research of a decade ago is the
“now practical” implementation of iCR. It has made the
automatic fixing of coding bugs possible on an enterprise
level.

The Creation of Fixers

The core of the iCR service is the Analysis Engine, which
incorporates a broad suite of behavior-enhancing refactor-
ings. These are referred to as Fixers.

Each fixer addresses a specific class of security, reliability,
or compliance problem:

Security Fixers target a specific security problem to
prevent attackers from taking control of the system,
stealing data, and/or crashing applications. These will
target the most important problems in each program-
ming language, as described by the lists created by
OWASP, SANS, etc. For example, a fixer for Java
programs addresses SQL Injection issues that may
allow an attacker to access or steal information.

Reliability Fixers target problems that cause an
application to crash or slow down, or hamper the user
experience. For example, a fixer for Java programs
addresses a resource leak that may allow an attacker
to unexpectedly crash the application.

Compliance Fixers target compliance issues.
Standards organizations such as CERT define guide-
lines to eliminate insecure coding practices. Some of
these may be structural issues that involve code
smell, while others may be associated with exploit-
able vulnerabilities. Compliance fixers address these
issues to make code more robust. For example, a fixer
for Java programs may check that the fields of a Java
class are not directly set from outside. That is, a field
declared as public and directly accessed from other
classes should be modified to be a private field and
should only accessible through getter/setter methods.

Fixers address the entirety of what a code repair would
entail. For example, in the aforementioned case of a Java
field variable being declared public when it should be
private, the fixer first corrects the declaration of the
variable in the class where it is declared by changing it to
private. Then the fixer repairs all references to the variable
and corrects them from variable references to the appro-
priate set or get accessor methods. This demonstrates the
complexity of the task of accurate code correction .

OpenRefactory

Why iCR?
While it may seem intuitive that automatically fixing bugs

is a good thing, there are tangible reasons why automated
fixing is more than just an incremental tool.

Accuracy

iCR uses proprietary mathematical models to determine
how an error is to be corrected. While one might think that
a correction is a ‘simple text replacement’ process, this is
definitely not the case. Such a method will only work in
limited cases and is also prone to error. Instead, iCR Fixers
use models of the semantic behavior of the code in order
to ensure that the replaced code will behave the same.

Well, almost the same. Traditional code refactoring models
are used to ensure that refactored code semantics exactly
match the code they are replacing. With iCR, the replaced
code is adjusted slightly to remove the offending code.
This method ensures that the correction is always accurate

In order to ensure that the developer does not miss a
critical issue, current detection services err on the side of
more false positives. Typical numbers in the industry for
false positives range in excess of 50%. This means that one
out of every two (or more) warnings is a false positive.
These warnings must be manually reviewed, leading to
these issues:

+ Engineering time is spent reviewing the warning.
Additional engineers are usually part of the triage
process;

« If it is determined by the engineering team that the
warning is false, the team must teach the tool to
“silence” the warning;

+ A problem may be incorrectly tagged as a false
positive when it is an actual bug. In a worst-case
scenario, the problem is “silenced” so that the bug
remains in all future releases of the software.

Because iCR requires extensive knowledge of the source
code in order to rewrite it, the analysis it performs and the
metadata that it collects are much more extensive than
current detection-only technologies.

Quality

One of the main objectives in performing static analysis is
to improve code quality. As noted in the Coralogix report,
typical software releases contain, on average, 15 bugs per
1,000 lines of code. This occurs despite rigorous develop-
ment practices that include design reviews, code reviews,
and extensive testing. Having a tool that can detect and
correct potentially dangerous security vulnerabilities not
only saves time in development, it also reassures your
customers that your delivered software is safe from poten-
tial breaches.

Productivity

Highlighted in the Coralogix blog® is the finding that about
75% of a developer’s time is spent debugging. This trans-
lates to about 1500 hours per year. About 30% of the bug
fixing time (~23% of total time) is spent on fixing security
bugs.t

Conservatively assuming that OpenRefactory tools will be
able to fix 60% of the bugs and developers will accept 80%
of these fixes, the use of these tools will translate into
about an 11% savings in terms of developer hours. An 11%
savings on effort means this time can be used in building
more features, fixing other bugs that may have been left
unfixed due to limited development time, or a quicker time
to market.

Innovation

Developers don’t like chasing bugs, and they really don’t
like triaging for false positives. Using existing tools with
high false positive rates not only consumes valuable time,
it is tiresome for developers. In many cases, the warnings
are for issues that the development managers consider
trivial and too time-consuming to fix manually. With iCR
handling these minor issues, false positives no longer bog
down developers.

This frees up developer time allowing them to spend more
time doing what they enjoy the most: creating value and
improving your product.

What Does iCR Contain?

The iCR service can operate on a transactional basis for
single scans of a project, referred to as an Audit. Or, iCR can
be integrated into a regular CI/CD operation as a service.
The iCR software is comprised of an iCR Analysis Engine
and an iCR Reviewer.

Both the iCR Analysis Engine and the iCR Reviewer run as
Dockerimages that can be easily installed and executed on
any laptop or desktop computer with the Docker container
infrastructure installed. The container framework is widely
accepted by developers as a safe and reliable mechanism
for running third party software on a developer’s system.
From the Docker site: “Docker provides a way to run appli-
cations securely isolated in a container, packaged with all
its dependencies and libraries.” Learn more about Docker
at: https://docs.docker.com.

The iCR Analysis Engine

OpenRefactory’s iCR Analysis Engine examines a project
using OpenRefactory’s Fixers. Each fixer is a proprietary
algorithm that the Engine uses to detect and correct
specific classes or types of bugs. Currently, OpenRefactory
provides iCR Fixers for both Java and C. Support for other

OpenRefactory

languages will be forthcoming in future releases of the
service.

The Engine parses source code and generates metadata to
be used for analysis and code rewriting. Then, the fixers
are executed that scan the source for known coding errors
and a set of code alterations are produced. From that set,
source code diff files are created, used both to present the
changes to the developer and to create the information
needed to effect the changes in the source code.

An Example of iCR for Java

The code fragment below implements a method called
getMaterialCost (). It returns either a value or -1 if
thereis an error.

private int getMaterialCost(ItemStack itemstack) {
if (itemStack.getItem() instanceof ItemTool) {
ItemTool tool = (ItemTool) itemStack.getItem();
return ToolMaterial.valueOf (tool.getToolMaterialName()).
ordinal();
} else {
return -1;

}

}

The code fragment below invokes this method. Note that
the call does not check for the error return code. This is an
opportunity for the error to cause a problem.

} else if (v == value) {
int ¢ = getMaterialCost(itemStack);
if (c < materialCost) {
value = v;
best = i;
materialCost = cj;

}

iCR detects that the method returns one or more values
that are not being checked by the programmer. Having
done so, iCR flags the offending fragment and inserts a
code block to handle the error return. If it happens that the
method might return multiple error codes, iCR can even
add code blocks to make sure that all return paths are
checked.

The last code block shows the corrected code with the
warning that the developer should insert the behavior to
be executed on the error. iCR’s machine-learning compo-
nent will add error handling code in a future release.

} else if (v == value) {
int ¢ = getMaterialCost(itemStack);
// OR Warning: Handle Error Code
if (c == -1) {
}
if (¢ < materialCost) {
value = v;
best = 1i;
materialCost = c;

}

}

An Example of iCR for C

It is common for C programs to have signedness (using a
signed integer in an unsigned context and vice versa) and
widthness (assigning an integer with larger memory size to

an integer with a smaller memory size) problems from
using variable types in incorrect contexts. These errors
derive from incorrectly declared variables.

The Change Integer Type fixer changes the declared type of
variables so that the uses of the variable are not conflicting
with the declaration.

The following shows a vulnerability in 1ibpng v1.4.9
(CVE-2011-3026), in lines 267-290 in pngrutil. c file.

267 int ret, avail;
276 avail = png_ptr->zbuf size-png ptr->zstream.avail out;

283 if (output != 0 && output_size > count)

284 {

285 int copy = output_size - count;

286 if (avail < copy) copy = avail;

287 png_memcpy (output + count, png_ptr->zbuf, copy);

288 }

290 count += avail;
291 ..

The fixer determines that avail should be an unsigned
int based on the fact that zstream.avail out was
previously understood to be of type unsigned int. It
then identifies that the variables avail and copy are
declared as integers but are used as unsigned integers in
all important contexts. They should be declared as
unsigned int.

The next code fragment shows how the C fixer detected the
mismatched type declarations and corrected the code for
declaring both avail and copy as unsigned int

types.

267 int ret, avail;

268 ..

267 int ret;

268 unsigned int avail;

269 ..

277 avail = png_ptr->zbuf size-png ptr->zstream.avail out;
278 ..

284 if (output != 0 && output_size > count)

285 {

286 unsigned int copy = output_size - count;

287 i (avail < copy) copy = avail:

288 png_memcpy (output + count, png_ptr->zbuf, copy);
289 }

290

291 count += avail;

292 ..

A more detailed discussion of this example and others can
be found in the paper, Program Transformations to Fix C
IntegersS.

The ICR Reviewer

Once the iCR Analysis Engine has executed its scan of the
code, the iCR Reviewer is used to browse through the fixes
that were generated. The Reviewer uses a “diff” window so
the developer can see the original code alongside the fixes
that were generated. The developer can also use the
Reviewer to browse all the source code in the affected file if
desired.

OpenRefactory

The Reviewer allows the developer to examine a flaw in the
original code and compare it with the correction. Although
the fixes are generated automatically, the process allows
the developer to make the final decision to accept a
change or not. If accepted, the developer can apply the
changes to the source itself. This example of the Reviewer
window shows a summary of the problems discovered, the
original code and the corrections that were automatically
generated.

Fix #8: Encapsulation Problem

In file: Messages.java, class: Messages has a field that is declared as public but it may allow unwarranted
access. The access to the field should be restricted and should only be through accessor methods. iCR
suggested changes in 2 files to resolve the problem.

Diff. 1 Diff: 2
difffile : Messages java6580229142764168042.diff
31 31

32 public static String GeneralTestSuitefromMarkers_F 3 public static String GeneralTestSuiteFronMarkers._f
ileNotFound; ileNot

33
34
35

36

37
43
a4

How Does It Work?

iCR can be operated either in a

The developer either triggers the Audit by invoking the
Analysis Engine directly from within Docker, or the SaaS
service may be triggered in a CI/CD system automatically
by build scripts (Step 1). In either case, the Analysis Engine
is invoked.

The Analysis Engine, from arguments given to it on invoca-
tion, can access the build information (Step 2). This allows
the Engine to locate necessary files such as classpaths for
Java or #include files for C. With that information, the
Engine can access the source files themselves (Step 3) and
analysis begins.

The Engine parses and builds intermediate metadata for
analysis. The time this step takes depends on the size of
the project, with large projects possibly requiring many
hours, due to the complex and deep analysis the Engine
performs. The fixers execute within the iCR Analysis Engine
and many run in parallel (Step 4). However, some are
dependent upon certain internal metadata and so may
take longer to complete, as they are serialized behind
internal tasks.

When the analysis is complete, the fixers generate correc-
tions (Step 5). The results are saved in a file outside the
Docker container so that they are available for review once
the Engine terminates. The Reviewer can then be invoked,
and the developer can review each set of corrections (Step

6). The developer may then

single-scan transactional modeor | &b+ docker :
integrated into a regular CI/CD e choosg fo accept the fix and
ocess. In either case. the 2 Tiggors soes e Acmake | | apply it back to the source code
P ' . . ’ 'R 1 2. Fetches Build Info @ r‘A N repOSitOfy (Step 7)
sequence of operations is much . >| Jenkins A4
the same. i e BuildSystem | Although changes can be
3. Pulls Source Code
. L , : accepted automatically, Open-
One of the key principles in usin iCR Analysis i)
y princip 8 Engine Geit Refactory recommends that the

iCR is the preservation of the
privacy of the developer’s source v

for Reviewer

4/5. Generates Fixes

)

mercurial

manual step of approval be

code. Most software companies
would balk at allowing some kind
of external access to their source

7. Commits Fixes to
Repository

performed. This makes sure
that a human developer is
aware of all the fixes that were

Source Code
Repository

code in order for it to be analyzed. iCR Reviewer

Therefore, iCR is deployed on the

generated, and may also help
the developer learn how better
code can be created at the

developer’s site and installed into

Intelligent Code Repair (iCR)

6. Reviews and .
Approves \\ I
-—
Customer Domain

outset. The educational value of

safe Docker containers. The
diagram shows how the process flow is arranged.

1 The Mythical Man-Month, Frederick Brooks, p. 8

iCRis an additional benefit.

23 Coralogix Blog: “This is what your developers are doing 75% of the time, and this is the cost you pay”;
https://coralogix.com/log-analytics-blog/this-is-what-your-developers-are-doing-75-of-the-time-and-this-is-the-cost-you-pay/

4 OpenRefactory customer discovery study, 2016. Presented at 2016 NSF SBIR/STTR Phase | Grantee Fall Workshop

5 Z. Coker and M. Hafiz; Proceedings of 35th International Conference on Software Engineering (ICSE 2013)

OpenRefactory

Learn More about iCR

Please contact us at info@openrefactory.com if you have questions or suggestions on the operation of iCR for C or iCR for
Java.

